Yeast src homology region 3 domain-binding proteins involved in bud formation
نویسندگان
چکیده
The yeast protein Bem1p, which bears two src homology region 3 (SH3) domains, is involved in cell polarization. A Rho-type GTPase, Rho3p, is involved in the maintenance of cell polarity for bud formation, and the rho3 defect is suppressed by a high dose of BEM1. Mutational analysis revealed that the second SH3 domain from the NH2 terminus (SH3-2) of Bem1p is important for the functions of Bem1p in bud formation and in the suppression of the rho3 defect. Boi2p, which bound to SH3-2 Bem1p, was identified using the two-hybrid system. Boi2p has a proline-rich sequence that is critical for displaying the Boi2p-Bem1p two-hybrid interaction, an SH3 domain in its NH2-terminal half, and a pleckstrin homology domain in its COOH-terminal half. A BOI2 homologue, BOI1, was identified as a gene whose overexpression inhibited cell growth. Cells overexpressing either BOI1 or BOI2 were arrested as large, round, and unbudded cells, indicating that the Boi proteins affect cell polarization. Genetic analysis revealed that BOI1 and BOI2 are functionally redundant and important for cell growth. delta boi1 delta boi2 cells became large round cells or lysed with buds, displaying defects in bud formation and in the maintenance of cell polarity. Analysis using several truncated versions of BOI2 revealed that the COOH-terminal half, which contains the pleckstrin homology domain is essential for the function of Boi2p in cell growth, while the NH2-terminal half is not, and the NH2-terminal half might be required for modulating the function of Bem1p. Overproduction of either Rho3p or the Rho3p-related GTPase Rho4p suppressed the boi defect. These results demonstrate that Rho3p GTPases and Boi proteins function in the maintenance of cell polarity for bud formation.
منابع مشابه
Homology Region 3 Domain-binding Proteins Involved in Bud Formation
The yeast protein Bemlp, which bears two src homology region 3 (SH3) domains, is involved in cell polarization. A Rho-type GTPase, Rho3p, is involved in the maintenance of cell polarity for bud formation, and the rho3 defect is suppressed by a high dose of BEM1. Mutational analysis revealed that the second SH3 domain from the NH2 terminus (SH3-2) of Bemlp is important for the functions of Bemlp...
متن کاملAssociations among PH and SH3 domain-containing proteins and Rho-type GTPases in Yeast
The src homology region 3 (SH3) domain-bearing protein Bem1p and the Rho-type GTPase Cdc42p are important for bud emergence in Saccharomyces cervisiae. Here, we present evidence that through its second SH3 domain, Bem1p binds to the structurally and functionally similar proteins Boi1p and Boi2p, each of which contain an SH3 and pleckstrin homology (PH) domain. Deletion of BOI1 and BO12 together...
متن کاملRole of SH3 domain-containing proteins in clathrin-mediated vesicle trafficking in Arabidopsis.
A group of plant AtSH3Ps (Arabidopsis thaliana SH3-containing proteins) involved in trafficking of clathrin-coated vesicles was identified from the GenBank database. These proteins contained predicted coiled-coil and Src homology 3 (SH3) domains that are similar to animal and yeast proteins involved in the formation, fission, and uncoating of clathrin-coated vesicles. Subcellular fractionation ...
متن کاملhCASK and hDlg associate in epithelia, and their src homology 3 and guanylate kinase domains participate in both intramolecular and intermolecular interactions.
Membrane-associated guanylate kinase (MAGUK) proteins act as molecular scaffolds organizing multiprotein complexes at specialized regions of the plasma membrane. All MAGUKs contain a Src homology 3 (SH3) domain and a region homologous to yeast guanylate kinase (GUK). We showed previously that one MAGUK protein, human CASK (hCASK), is widely expressed and associated with epithelial basolateral p...
متن کاملCoupling of septins to the axial landmark by Bud4 in budding yeast.
Cells of the budding yeast Saccharomyces cerevisiae select a site for polarized growth in a specific pattern that depends on their cell type. Haploid a and α cells bud in the axial budding pattern, which requires assembly of a landmark that includes the Bud4 protein. To understand how an axial bud site is established, we performed a structure-function analysis of Bud4. Bud4 contains DUF1709 (do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 133 شماره
صفحات -
تاریخ انتشار 1996